domingo, 22 de febrero de 2009

La importancia de las moleculas sencillas


La sustancia más abundante en la célula es el agua que constituye el 70 % del peso de la célula.
La importancia del agua viene por tres propiedades:
El agua es polar
El agua es capaz de formar fuerte enlaces de hidrogeno
El agua posee una alta densidad superficial

ANTECEDENTES RESPUESTA CONSECUENTES
Existen cuatro grandes familias de moléculas orgánicas pequeñas:

Glucidos o carbohidratos

Lípidos

Aminoácidos

Acidos nucleicos o Nucleotidos

Los carbohidratos
El carbono determina la conformación de los glucidos, de donde procede su nomenclatura. En un átomo puede haber de 3 a 7 carbonos. Dependiendo del numero de carbonos se llamará:
3 trilosa, 4 tetrosa, 5 pentosa, 6 hexosa, 7 heptosa.
Los azucares según el numero de moléculas que los componen pueden ser:
1 Monosacaridos, Si la cadena de sacaridos tiene de 2 a 10 Oligosacaridos
A partir de 10 y sin limite polisacaridos.
Funciones de los azucares
Los azucares tienen varias funciones, pero principalmente son una gran fuente de energía.

FUNCIÓN ESTRUCTURAL: ·
Los azucares tienen un importante papel en la conformación y estructura de las células
Los lípidos
Los lípidos son un grupo general de sustancias orgánicas insolubles en agua, tienen como función la de proporcionar energía al organismo igual que los glucidos, pero incluso en mayor grado.
Los lípidos se almacenan en triglicéridos que están formador por glicerol y ácidos grasos.
Otra función importante de los lípidos esta en la formación de membranas biológicas, que pueden ser de dos tipos:

membrana de Fosfolipidos

membrana de esfingolipidos


Los esfingolipidos son importantes en la formación de la membrana de las células nerviosas (neuronas y glia) así como las envolturas de mielina que regulan los axones.
En el caso de la membrana plasmática de las células, los lípidos se disponen formando una bicapa con las cabezas polares (hidrofilicas) dirigidas al medio acuoso y con las colas (hidrófobas) de ácidos grasos enfrentadas entre si.
Los fosfolipidos y los esfingolipidos forman parte de las membranas celulares animales y vegetales debido a su carácter anfipatico.


los aminoácidos y las proteínas
Los aminoácidos son las unidades básicas que componen las proteínas, las cuales están compuestas por largos polímeros encadenados (aminoácidos encadenados) aunque existen muchas posibles combinaciones, en la formación de las proteínas, solo se utilizan 20 aminoácidos posibles Ej. Alanina,...
Todos estos aminoácidos están unidos a través del enlace peptidico.
Proteínas: son vitales para la conformación estructural de las células y para sus funciones biológicas.
Existe para cada proteína un segmento especifico de ADN que la codifica.

Casi todas las reacciones químicas de las células están catalizadas por encimas.
Otra de las funciones es que son proteínas de transporte
Como la hemoglobina que transporta oxigeno
También actúan como factores nutrientes y de reserva, también son contractiles (tubulina, que forma los microtubulos del citoesqueleto de las células)

Proteínas estructurales: algunas proteínas pueden formar filamentos, hojas o laminas para conferir fuerza o protección a las estructuras biológicas.
Las proteínas con funciones de defensa forman parte del sistema inmunitario.
Igualmente las proteínas pueden funcionar como anticuerpos, o inmunoglobulinas y actúan defendiendo al organismo de elementos patógenos, ya que son capaces de neutralizar o marcar, bacterias o virus. El ejemplo lo podemos encontrar en la trombina que hace que coagule la sangre y llega a evitar hemorragias.
Otras proteínas son las reguladoras que pueden ser hormonas como la insulina, que es considerada como la más común y se encarga de regular los niveles de azúcar en la sangre.
Otro tipo de proteínas reguladoras son las proteínas G que intervienen en los mecanismos de
neurotransmisores.

ESTRUCTURA DE LAS PROTEÍNAS
Las proteínas formadas por la unión de distintos aminoácidos a través del enlace peptidico, tendrán las características que le confieran los aminoácidos que las forman.
Las proteínas formadas por distintos aminoácidos son DISTINTAS. De modo que la estructura primaria de la proteína vendrá dada por secuencia su secuencia de aminoácidos.
Conforme se van sintetizando proteínas, estas tienden a enrrollarse, ya que los extremos, los residuos de los aminoácidos son hidrófobos y tienden a quedar agrupados en la parte interna de la proteína.

Composicion quimica aproximada de una celula bacterial



Hay células de formas y tamaños muy variados. Algunas de las células bacterianas más pequeñas tienen forma cilíndrica de menos de una micra o µm (1 µm es igual a una millonésima de metro) de longitud. En el extremo opuesto se encuentran las células nerviosas, corpúsculos de forma compleja con numerosas prolongaciones delgadas que pueden alcanzar varios metros de longitud (las del cuello de la jirafa constituyen un ejemplo espectacular). Casi todas las células vegetales tienen entre 20 y 30 µm de longitud, forma poligonal y pared celular rígida. Las células de los tejidos animales suelen ser compactas, entre 10 y 20 µm de diámetro y con una membrana superficial deformable y casi siempre muy plegada.
Pese a las muchas diferencias de aspecto y función, todas las células están envueltas en una membrana —llamada membrana plasmática— que encierra una sustancia rica en agua llamada citoplasma. En el interior de las células tienen lugar numerosas reacciones químicas que les permiten crecer, producir energía y eliminar residuos. El conjunto de estas reacciones se llama metabolismo (término que proviene de una palabra griega que significa cambio). Todas las células contienen información hereditaria codificada en moléculas de ácido desoxirribonucleico (ADN); esta información dirige la actividad de la célula y asegura la reproducción y el paso de los caracteres a la descendencia. Estas y otras numerosas similitudes (entre ellas muchas moléculas idénticas o casi idénticas) demuestran que hay una relación evolutiva entre las células actuales y las primeras que aparecieron sobre la Tierra.
Células
El término célula hace referencia tanto a organismos completos —dinoflagelados, diatomeas, espiroquetas causantes de enfermedades— como a elementos especializados de organismos superiores pluricelulares, como linfocitos, eritrocitos, células musculares o nerviosas. Con independencia del tamaño o de que sea una entidad autónoma o una parte de un organismo, todas las células tienen ciertos elementos estructurales comunes. Todas están encerradas por algún tipo de envuelta externa semipermeable que protege un interior fluido rico en agua, llamado citoplasma, y todas contienen material genético en forma de ADN (ácido desoxirribonucleico).


Composición química
En los organismos vivos no hay nada que contradiga las leyes de la química y la física. La química de los seres vivos, objeto de estudio de la bioquímica, está dominada por compuestos de carbono y se caracteriza por reacciones acaecidas en solución acuosa y en un intervalo de temperaturas pequeño. La química de los organismos vivientes es muy compleja, más que la de cualquier otro sistema químico conocido. Está dominada y coordinada por polímeros de gran tamaño, moléculas formadas por encadenamiento de subunidades químicas; las propiedades únicas de estos compuestos permiten a células y organismos crecer y reproducirse. Los tipos principales de macromoléculas son las proteínas, formadas por cadenas lineales de aminoácidos; los ácidos nucleicos, ADN y ARN, formados por bases nucleotídicas, y los polisacáridos, formados por subunidades de azúcares.
Células procarióticas y eucarióticas
Entre las células procarióticas y eucarióticas hay diferencias fundamentales en cuanto a tamaño y organización interna. Las procarióticas, que comprenden bacterias y cianobacterias (antes llamadas algas verdeazuladas), son células pequeñas, entre 1 y 5 µm de diámetro, y de estructura sencilla; el material genético (ADN) está concentrado en una región, pero no hay ninguna membrana que separe esta región del resto de la célula. Las células eucarióticas, que forman todos los demás organismos vivos, incluidos protozoos, plantas, hongos y animales, son mucho mayores (entre 10 y 50 µm de longitud) y tienen el material genético envuelto por una membrana que forma un órgano esférico conspicuo llamado núcleo. De hecho, el término eucariótico deriva del griego `núcleo verdadero', mientras que procariótico significa `antes del núcleo'.

Eucariota: célula animal
Las estructuras internas de la célula animal están separadas por membranas. Destacan las mitocondrias, orgánulos productores de energía, así como las membranas apiladas del retículo endoplasmático liso (productor de lípidos) y rugoso (productor de proteínas). El aparato de Golgi agrupa las proteínas para exportarlas a través de la membrana plasmática, mientras que los lisosomas contienen enzimas que descomponen algunas de las moléculas que penetran en la célula. La membrana nuclear envuelve el material genético celular.


Procariota: cianobacteria
Las bacterias y otras células procarióticas carecen casi siempre de muchas de las estructuras internas propias de las células eucarióticas. Así, el citoplasma de las procarióticas está rodeado por una membrana plasmática y una pared celular (como en las células vegetales), pero no hay membrana nuclear ni, por tanto, núcleo diferenciado. Las moléculas circulares de ADN están en contacto directo con el citoplasma. Además carecen de mitocondrias, retículo endoplasmático, cloroplastos y aparato de Golgi. Aunque, en general, las células procarióticas carecen de estructuras internas delimitadas por membrana, las cianobacterias, como la ilustrada aquí, sí contienen numerosas membranas llamadas tilacoides, que contienen clorofila y pigmentos fotosintéticos que utilizan para captar la energía de la luz solar y sintetizar azúcares.

Eucariota: célula vegetal
Las células vegetales, así como las animales, presentan un alto grado de organización, con numerosas estructuras internas delimitadas por membranas. La membrana nuclear establece una barrera entre la cromatina (material genético) y el citoplasma. Las mitocondrias, de interior sinuoso, convierten los nutrientes en energía que utiliza la planta. A diferencia de la célula animal, la vegetal contiene cloroplastos, unos orgánulos capaces de sintetizar azúcares a partir de dióxido de carbono, agua y luz solar. Otro rasgo diferenciador es la pared celular, formada por celulosa rígida, y la vacuola única y llena de líquido, muy grande en la célula vegetal.


Superficie celular
El contenido de todas las células vivas está rodeado por una membrana delgada llamada membrana plasmática, o celular, que marca el límite entre el contenido celular y el medio externo. La membrana plasmática es una película continua formada por moléculas de lípidos y proteínas, entre 8 y 10 nanómetros (nm) de espesor y actúa como barrera selectiva reguladora de la composición química de la célula. La mayor parte de los iones y moléculas solubles en agua son incapaces de cruzar de forma espontánea esta barrera, y precisan de la concurrencia de proteínas portadoras especiales o de canales proteicos. De este modo la célula mantiene concentraciones de iones y moléculas pequeñas distintas de las imperantes en el medio externo. Otro mecanismo, que consiste en la formación de pequeñas vesículas de membrana que se incorporan a la membrana plasmática o se separan de ella, permite a las células animales transferir macromoléculas y partículas aún mayores a través de la membrana.
Casi todas las células bacterianas y vegetales están además encapsuladas en una pared celular gruesa y sólida compuesta de polisacáridos (el mayoritario en las plantas superiores es la celulosa). La pared celular, que es externa a la membrana plasmática, mantiene la forma de la célula y la protege de daños mecánicos, pero también limita el movimiento celular y la entrada y salida de materiales.
El núcleo
El órgano más conspicuo en casi todas las células animales y vegetales es el núcleo; está rodeado de forma característica por una membrana, es esférico y mide unas 5 µm de diámetro. Dentro del núcleo, las moléculas de ADN y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos y enmarañados y es difícil identificarlos por separado. Pero justo antes de que la célula se divida, se condensan y adquieren grosor suficiente para ser detectables como estructuras independientes. El ADN del interior de cada cromosoma es una molécula única muy larga y arrollada que contiene secuencias lineales de genes. Éstos encierran a su vez instrucciones codificadas para la construcción de las moléculas de proteínas y ARN necesarias para producir una copia funcional de la célula.
El núcleo está rodeado por una membrana doble, y la interacción con el resto de la célula (es decir, con el citoplasma) tiene lugar a través de unos orificios llamados poros nucleares. El nucleolo es una región especial en la que se sintetizan partículas que contienen ARN y proteína que migran al citoplasma a través de los poros nucleares y a continuación se modifican para transformarse en ribosomas.
El núcleo controla la síntesis de proteínas en el citoplasma enviando mensajeros moleculares. El ARN mensajero (ARNm) se sintetiza de acuerdo con las instrucciones contenidas en el ADN y abandona el núcleo a través de los poros. Una vez en el citoplasma, el ARNm se acopla a los ribosomas y codifica la estructura primaria de una proteína específica.

Núcleo celular
El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado nucleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre nucleoplasma y citoplasma.
Citoplasma y citosol
El citoplasma comprende todo el volumen de la célula, salvo el núcleo. Engloba numerosas estructuras especializadas y orgánulos, como se describirá más adelante.
La solución acuosa concentrada en la que están suspendidos los orgánulos se llama citosol. Es un gel de base acuosa que contiene gran cantidad de moléculas grandes y pequeñas, y en la mayor parte de las células es, con diferencia, el compartimiento más voluminoso (en las bacterias es el único compartimiento intracelular). En el citosol se producen muchas de las funciones más importantes de mantenimiento celular, como las primeras etapas de descomposición de moléculas nutritivas y la síntesis de muchas de las grandes moléculas que constituyen la célula. Aunque muchas moléculas del citosol se encuentran en estado de solución verdadera y se desplazan con rapidez de un lugar a otro por difusión libre, otras están ordenadas de forma rigurosa. Estas estructuras ordenadas confieren al citosol una organización interna que actúa como marco para la fabricación y descomposición de grandes moléculas y canaliza muchas de las reacciones químicas celulares a lo largo de vías restringidas.
Citoplasma
Esta micrografía electrónica de transmisión de una célula de levadura (Rhodosporidium toryloides) tratada por el método de congelación-fractura muestra varios orgánulos suspendidos en una matriz citoplásmica; el fondo de la célula lo ocupa un cuerpo lipídico esférico y oscuro, con el voluminoso núcleo en la parte superior derecha y una mitocondria curva en el extremo superior de la célula. El fuerte aumento revela que el citoplasma, un gel viscoso, engloba una retícula tridimensional de fibras proteicas. Estos filamentos, llamados citoesqueleto, interconectan y sujetan los elementos `sólidos' antes citados.
Citoesqueleto
El citoesqueleto es una red de filamentos proteicos del citosol que ocupa el interior de todas las células animales vegetales. Adquiere una relevancia especial en las animales, que carecen de pared celular rígida, pues el citoesqueleto mantiene la estructura y la forma de la célula. Actúa como bastidor para la organización de la célula y la fijación de orgánulos y enzimas. También es responsable de muchos de los movimientos celulares. En muchas células, el citoesqueleto no es una estructura permanente, sino que se desmantela y se reconstruye sin cesar. Se forma a partir de tres tipos principales de filamentos proteicos: microtúbulos, filamentos de actina y filamentos intermedios, unidos entre sí y a otras estructuras celulares por diversas proteínas.
Los movimientos de las células eucarióticas están casi siempre mediatizados por los filamentos de actina o los microtúbulos. Muchas células tienen en la superficie pelos flexibles llamados cilios o flagelos, que contienen un núcleo formado por un haz de microtúbulos capaz de desarrollar movimientos de flexión regulares que requieren energía. Los espermatozoides nadan con ayuda de flagelos, por ejemplo, y las células que revisten el intestino y otros conductos del cuerpo de los vertebrados tienen en la superficie numerososcilios que impulsan líquidos y partículas en una dirección determinada. Se encuentran grandes haces de filamentos de actina en las células musculares donde, junto con una proteína llamada miosina, generan contracciones poderosas. Los movimientos asociados con la división celular dependen en animales y plantas de los filamentos de actina y los microtúbulos, que distribuyen los cromosomas y otros componentes celulares entre las dos células hijas en fase de segregación. Las células animales y vegetales realizan muchos otros movimientos para adquirir una forma determinada o para conservar su compleja estructura interna.
Mitocondrias y cloroplastos
Las mitocondrias son uno de los orgánulos más conspicuos del citoplasma y se encuentran en casi todas las células eucarióticas. Observadas al microscopio, presentan una estructura característica: la mitocondria tiene forma alargada u oval de varias micras de longitud y está envuelta por dos membranas distintas, una externa y otra interna, muy replegada. Las mitocondrias son los orgánulos productores de energía. La célula necesita energía para crecer y multiplicarse, y las mitocondrias aportan casi toda esta energía realizando las últimas etapas de la descomposición de las moléculas de los alimentos. Estas etapas finales consisten en el consumo de oxígeno y la producción de dióxido de carbono, proceso llamado respiración, por su similitud con la respiración pulmonar. Sin mitocondrias, los animales y hongos no serían capaces de utilizar oxígeno para extraer toda la energía de los alimentos y mantener con ella el crecimiento y la capacidad de reproducirse. Los organismos llamados anaerobios viven en medios sin oxígeno, y todos ellos carecen de mitocondrias.

Los cloroplastos son orgánulos aún mayores y se encuentran en las células de plantas y algas, pero no en las de animales y hongos. Su estructura es aún más compleja que la mitocondrial: además de las dos membranas de la envoltura, tienen numerosos sacos internos formados por membrana que encierran el pigmento verde llamado clorofila. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono pequeñas y ricas en energía, y va acompañado de liberación de oxígeno. Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias.
Mitocondria
Las mitocondrias, estructuras diminutas alargadas que se encuentran en el hialoplasma (citoplasma transparente) de la célula, se encargan de producir energía. Contienen enzimas que ayudan a transformar material nutritivo en trifosfato de adenosina (ATP), que la célula puede utilizar directamente como fuente de energía. Las mitocondrias suelen concentrarse cerca de las estructuras celulares que necesitan gran aportación de energía, como el flagelo que dota de movilidad a los espermatozoides de los vertebrados y a las plantas y animales unicelulares.
Membranas plasmáticas de dos células
La membrana plasmática (MP) es una estructura semipermeable que separa la célula del medio externo. Consiste en una capa doble de fosfolípidos que permite el movimiento de agua y ciertos iones a través de ella, mediante la interacción con proteínas específicas. En los protozoos, la membrana envuelve y absorbe fluidos y material celular nutritivo, y expulsa residuos.

Estructura y funciones de las celulas procariotas y eucariotas

ESTRUCTURA Y FUNCIONES
La célula es una estructura constituida por tres elementos básicos: membrana plasmática, citoplasma y material genético (ADN). Las células tienen la capacidad de realizar las tres funciones vitales: nutrición, relación y reproducción ,
Color del textoLa forma de las células está determinada básicamente por su función. La forma puede variar en función de la ausencia de pared celular rígida, de las tensiones de uniones a células contiguas, de la viscosidad del citosol, de fenómenos osmóticos y de tipo de citoesqueleto interno.
El tamaño de las células es también extremadamente variable. Los factores que limitan su tamaño son la capacidad de captación de nutrientes del medio que les rodea y la capacidad funcional del núcleo.
Estructura de las células
La estructura común a todas las células comprende la membrana plasmática, el citoplasma y el material genético o ADN.
Membrana plasmática: constituida por una bicapa lipídica en la que están englobadas ciertas proteínas. Los lípidos hacen de barrera aislante entre el medio acuoso interno y el medio acuoso externo.
El citoplasma: abarca el medio líquido, o citosol, y el morfoplasma (nombre que recibe una serie de estructuras denominadas orgánulos celulares).
El material genético: constituido por una o varias moléculas de ADN. Según esté o no rodeado por una membrana, formando el núcleo, se diferencian dos tipos de células: las procariotas (sin núcleo) y las eucariotas (con núcleo).
Las células eucariotas, además de la estructura básica de la célula (membrana, citoplasma y material genético) presentan una serie de estructuras fundamentales para sus funciones vitales
El sistema endomembranoso: es el conjunto de estructuras membranosas (orgánulos) intercomunicadas que pueden ocupar casi la totalidad del citoplasma.
Orgánulos transductores de energía: son las mitocondrias y los cloroplastos. Su función es la producción de energía a partir de la oxidación de la materia orgánica (mitocondrias) o de energía luminosa (cloroplastos).
Estructuras carentes de membranas: están también en el citoplasma y son los ribosomas, cuya función es sintetizar proteínas; y el citoesqueleto, que da dureza, elasticidad y forma a las células, además de permitir el movimiento de las moléculas y orgánulos en el citoplasma.
El núcleo: mantiene protegido al material genético y permite que las funciones de transcripción y traducción se produzcan de modo independiente en el espacio y en el tiempo.
En el exterior de la membrana plasmática de la célula procariota (ver t40) se encuentra la pared celular, que protege a la célula de los cambios externos. El interior celular es mucho más sencillo que en las eucariotas; en el citoplasma se encuentran los ribosomas, prácticamente con la misma función y estructura que las eucariotas pero con un coeficiente de sedimentación menor. También se encuentran los mesosomas, que son invaginaciones de la membrana. No hay, por tanto, citoesqueleto ni sistema endomembranoso. El material genético es una molécula de ADN circular que está condensada en una región denominada nucleoide. No está dentro de un núcleo con membrana y no se distinguen nucleolos